Caribbean Recruitment of Florida's Spiny Lobster Population

HAROLD W. SIMS, JR., AND ROBERT M. INGLE

THE Florida spiny lobster, *Panulirus argus* (Latreille) is an animal of considerable importance to Florida fisheries. The principal fishery is centered in the Florida Keys and southeastern Florida, but it ranges throughout the Gulf of Mexico and along the east coast of the United States to Beaufort, North Carolina (Moore, 1962).

Previous reports have been published on various phases of the biology of this animal. Crawford (1922) wrote on spawning habits and artificial hatching. Crawford and De Smidt (1922) covered life history, utilization, and the findings of a spiny lobster hatchery formerly operated by the U.S. Fish and Wildlife Service at Key West. Smith (1948a, 1958) dealt with the fisheries generally and made notes on life history, methods of capture, markets, and legal regulations. Dawson and Idyll (1951) reported on conservation methods. Lewis (1951) described the phyllosoma larvae and was first to mention that foreign recruitment may take place. Later Lewis, Moore, and Babis (1952) reported on the post-larval stages. Robinson and Dimitriou (1963) published on the present and past status of the fishery. Ingle et al. (1963) proposed a possible Caribbean origin of Florida's spiny lobster populations and were the first to emphasize the importance of the Yucatan Straits in such recruit-Several mimeographed reports have been prepared by the ment. University of Miami on the production of marketable lobsters. The present summary provides an extension of the work reported by Ingle and co-workers.

METHODS AND MATERIALS

Between August 1962 and August 1963 eight trips were made through Florida Straits to the Yucatan Straits for the purpose of collecting plankton. Samples were taken during the day and night when work was underway. Some cruises and sampling were terminated before reaching the Yucatan Straits, as weather and rental boat fees governed the number of days work on each cruise. During the eight trips 413 samples were taken and a total of 6931 phyllosoma larvae belonging to the genus *Panulirus* were collected.

Standard tows were made at random with a conical California-

Station	Day		Nig	ht
Number	*300/s	Surf.	*300/s	Surf.
1	5	0		
2	14	0		
2 3	11	0		
4			0	25
5	21	1		
6	13	0		
7	5	1		
8	0	0		
9	1	0		
10			1	62
11			5	80
12			24	245
13			4	21
14	Trawl S	ample		
15	35	4		
16	14	0		
17	14	0		
18	41	0		
19	36	5		
20			24	153
21				162
22			1	4
23	0	0		
24	1	0		
25	0	0		
26			5	31
27			1	272
28	Try			
29	Try			
30	1	0		

TABLE 1

Vertical distribution and diurnal migration of phyllosoma Cruise number 7, June 1963. Number collected by each net by day or night

*Oblique tow 300 foot to surface.

TABLE 1 (Continued)

Vertical distribution and diurnal migration of phyllosoma Cruise number 7, June 1963. Number collected by each net by day or night

Station	n I	Day	Ni	ght	
Numbe		Surf.	*300/s	Surf.	
31	22	0			
32			22	0	
33			51	69	
34			12	4	
35			0	10	
36	66	0			
37	44	0			
38	6	1			
39	32	0			
40			4	14	
41	19	0			
42	2	0			
43	48	0			
44	11	0			
45			9	6	
46			21	76	
47			21	107	
48			15	0	
49	5	5			
50	2	1			
51	6	0			
52	36	0			
53			17	8	
54			3	60	
55			4	399	
56			8	12	
57	9	2			
58	21	0			
59			26	11	
60	0	0			

*Oblique tow 300 foot to surface.

type plankton net with a diameter of one meter at the mouth and about 15 meters in length. The main body of the net was constructed or number 30 grit nylon gauze with a finer section of number 56 grit nylon gauze at the cod end. It was lowered into the water to a depth of 150 or 300 feet and was then brought to the surface over an oblique tow which brought it from scheduled depth to surface in 30 minutes. At the same time another net of the same type, or of ½ meter in diameter in some cases, was towed just below the surface. Phyllosoma larvae were collected in both nets. Samples were preserved immediately in 5 per cent formaldehyde. Later they were washed, then stored in 3-5 per cent formaldehyde buffered with borax and marble chips.

In the laboratory all phyllosoma larvae were removed from plankton collected in each sample. Various known and unknown species were separated and the number of larvae for each species recorded. Total length, measured from the apex of the angle formed by the eye stalks to the tip of the telson, and the possible stage of development were recorded. Tables 2-6 deal with the phyllosoma larvae of only *Panulirus*.

THE PHYLLOSOMA LARVAE

The phyllosoma larvae of the Palinuridae (typical spiny lobsters) and the Scyllarides (sand or shovel-nosed lobsters) are leaf-like and transparent plankton.

The colloquial name stems from Leach (1816), who gave such larvae the generic name *Phyllosoma*. Other workers notably Guerin (1830), Richters (1873), and Ortmann (1893), carried on the name in the belief that these forms were adult. White (1847) gave the adult form of a spiny lobster the generic name *Panulirus*. It was not until the early 1900's that many zoologists simultaneously discovered that the phyllosoma were the larval stages of spiny lobsters. Although *Phyllosoma* has priority, it has been used exclusively for larvae, and the International Commission on Zoological Nomenclature recently suppressed *Phyllosoma* in favor of *Panulirus* (Von Bonde, 1932).

The long larval life of phyllosoma is well documented by Smith (1948b), Sheard (1949), Lewis (1951), Johnson (1960a), and many others. The wide geographic dispersal, via ocean currents, is shown by Gurney (1936), Smith (1948a), and Thorson (1961).

Because *P. argus* is the commonest spiny lobster in the area of this study as well as in the Caribbean, the area of possible recruitment, it is assumed that the majority of phyllosoma reported upon here belong to that species. Probably some are of the species *P. guttatus* (Latreille) and *P. laevicauda* (Latreille), both of which are reported in scattered populations throughout the areas of study by Holthuis and Zaneveld (1958), Holthuis (1946), and Smith (1948b). There is no published literature describing laboratoryreared phyllosoma of *P. argus*, *P. guttatus*, or *P. laevicauda*, and no one has ventured to describe the larvae of *P. guttatus* or *P. laevicauda* from planktonic collections. Lewis (op. cit.) described from plankton 11 stages in the larval development of *P. argus*. Although our data are not in complete agreement with those of Lewis, we provisionally accept his designations. It appears there could be intermediates between many of the stages Lewis describes, but little more than conjecture could be added without laboratory raised material.

For 300 *Panulirus* phyllosomas selected at random, an attempt was made to separate the three species meristically, by comparing such body parts as fore-body width to total length and fore-body width to hind-body width. These ratios failed to show any specific differences. To further check this method the same *Panulirus* phyllosomas were plotted against an equal number of phyllosomas of *Parribacus*, of the family Scyllaridae. Phyllosoma of these two genera are similar in body shape, but the two are easily separable on morphological characteristics. The graphs failed to show a difference between the two genera until the very late stages, and then only because *Parribacus* grows much larger as a phyllosoma.

From work of Saisho (1964), who compared the first stages of several species of *Panulirus*, and from our own observations on *Parribacus* (Sims, 1965), it does not appear to be possible at present to distinguish between the phyllosomas of closely related species.

SURFACE CURRENTS AND LARVAL MIGRATION

Ocean currents affect the distribution of food for fish, they warm or cool areas of the sea so that certain species of marine life might dwell there, and they aid in the distribution and transmigration of the eggs and larvae of these species. Consequently, a knowledge of currents is essential for the understanding of the variations in abundance of marine animals that depend on them.

7	TABLE	
0	EL LU VIL	

Monthly data for Area I, latitude 20-22° N

.М.Ч		0.62	_			_		_		0	5961 'Bn V
Г.Q.	E.7E	£.82	69	43	8.1	9	8.71	9	J.5-2.1	91 <i>L</i>	£961 ∋unſ
'W'N	3.76	0.32	100	6	7.1	Ţ	0.35	τ	Z.8-Z.1	1001	1953 1953 1953
.М.Я	0.85	0.82					_			0	1963 1903
.М.Я	0.65	9.32	95	Þ		L	9.61	L	2.81-2.2	ΤI	1962 D ^{ec.}
Б.	6.78	9.82	09	g	8.I		_	_	2.11-0.1	6	1962 Oct. 1962
.Q.	9.7£	0.62		—						0	.tq9Z
Е.Q.	2.85	<i>T</i> .62	100	01	0.8	ç	<i>L</i> . <i>T</i>	ç	0.62-3.1	662	.20A 2991
nooM 92£AA	.ls2 .ls2	, ^{дуд} . Тетр.	Per cent with Larvae	1900 Sampler Samber	IsboM 93i2	Modal Stage	Mean Deviation	пвэМ Эдаяд	Size Sange	Number Collected	Date

Published studies on the surface currents of the Caribbean Sea and Gulf of Mexico (Sverdrup et al., 1949; Leipper, 1954; Stommel, 1958; Drummond and Austin, 1958; Stewart, 1962; Ichive, 1962; Day, 1961; Salsman and Tolbert, 1963; Tapenes, 1963; Wust, 1964) indicate that the currents of the Caribbean, via the Yucatan Straits, may be of importance in seeding Florida and the Gulf of Mexico with tropical marine life. These wind driven currents of the Caribbean, after going through numerous local eddies and gyres along shorelines, flow into the narrow straits between Cuba and Yucatan. After leaving the Yucatan Straits the water fans out into various parts of the Gulf of Mexico. Water on the eastern edge of the straits turns to the right to enter the Florida Straits and Gulf Stream, water mid-way in the straits flows northward into the Gulf of Mexico where it (1) enters the so called "loop current" (Salsman and Tolbert, 1963; Univ. of Miami, 1957), which flows first northward toward the United States coastline, then turns south and enters a clockwise eddy flowing along the continental shelf of Florida's west coast; or (2) after a northward flow turns to the left and enters a counterclockwise eddy that flows along the coasts of Mississippi, Louisiana, and Texas. Water on the western side of the straits flows into the southwestern Gulf and Campeche area. There is an indication that some of this water leaves the Gulf by subsurface and counter currents (Leipper, 1954; Salsman and Tolbert, 1963). Leipper (1954) gives a generalized current pattern of the surface currents of the Gulf of Mexico and Yucatan Straits.

There is biological evidence that tropical Caribbean fish and invertebrates are carried to Florida by these currents (Caldwell and Briggs, 1957; Briggs, 1958; Caldwell, 1959; and Dawson and Idyll, 1951). Cuppy (1917) and Arendt (1963) show that ocean currents transport large numbers of "sea beans" from the Caribbean to the coasts of the Gulf of Mexico and east Florida.

With this oceanographic and biological evidence in mind we initiated a drift-bottle study which would help establish the rate of flow of the surface currents in which the phyllosoma probably travel. The data discussed herein cover work during the spring and summer of 1963, with notes on a small drop made in the fall of 1962.

The release of drift-bottles was made in conjunction with our plankton sampling cruises. Bottles of various types were dropped

TABLE 3

Monthly	data f	for Area	II,	latitude	$22-24^{\circ}$	Ν
---------	--------	----------	-----	----------	-----------------	---

Date	Number Collected	Size Range	Mean Stage	Mean Deviation	Modal Stage	Modal Size	Number Samples	Per cent with Larvae	Avg. Temp.	Avg. Sal.	Moon Phase
Aug. 1962	136	1.6-15.0	4	13.1	4	3.5	14	86	30.1	37.6	F.Q.
Sept. 1962	403	1.5-26.0	7	18.1	7	5.2	30	64	29.6	38.3	L.Q.
Oct. 1962	457	1.5-23.2	4	16.7	4	4.0	27	82	29.3	37.5	F.Q.
Dec. 1962	164	1.5 - 25.1	7	10.6	7	8.2	32	46	25.4	38.7	F.M.
Jan. 1963	191	2.3-25.2	6	12.6	6	7.2	19	61	25.6	38.4	F.M.
Apr. 1963	158	1.4-21.0	1	24.8	1	1.7	56	48	27.0	38.0	N.M.
June 1963	1843	1.5-20.1	6	17.1	6	1.7	51	76	28.1	38.0	L.Q.
Aug. 1963	353	1.5-23.3	7	14.1	7	5.2	14	92	29.0	-	F.M.

214QUARTERLY JOURNAL OF THE FLORIDA ACADEMY OF SCIENCES during cruises in the months of September and October, 1962, and April, June, and August of 1963. Fig. 1 shows the approximate location of each release. Table 7 gives a complete list of the returns to date.

DRIFT BOTTLE RELEASE AND RETURN DATA

During the fall of 1962, 20 bottles were released in the Yucatan Straits. One was recovered 18 days later at Snake Creek bridge in the Florida Keys, a distance of more than 360 miles, with a minimum rate of 20 miles a day. Another was found at Key Largo 119 days after release; as this bottle was found high on the beach it may have been there for some time. A third bottle released toward the western side of the Yucatan Straits, was recovered after 210 days at Matagorda, Texas.

In April, 1963, 212 drift-bottles were released in groups of 6 along a course from Dry Tortugas to Alacran Reef and then south-

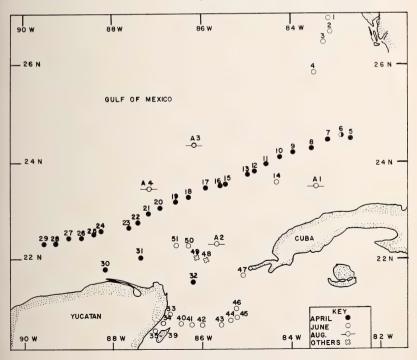


Fig. 1 Drift-bottle release locations (from U. S. Coast and Geodetic Survey Chart No. 1007).

Š
(of S
Academy
Florida
THE
OF
Journal
QUARTERLY JOURNAL OF THE FLORIDA ACADEMY
216

CIENCES

LYBLE ∉

Monthly data for Area III, 24-26* N

F.M.		0.62		۶ī	2.2	ۍ . ۲	8.82	5	2.92-7.1	727	:ՅսՔ Տու
г.б.	8.78	2.82	77 72	12	7.1	τ	<i>1.</i> 71	I	7.91-8.1	₽SI	8961 aunf
'W'N	2.78	0.92	20	81	5.5	ç	2.21	2	0.02-0.1	28	1963 Jdv 1963
.М.Я	9.85	1.42	42	L	2.6	L	7.81	L	2.02-2.6	L	лас. 1962 1962
.М.Я	6.75	7.62	£Þ	02	2.6	9	6.71	9	6.71-8.1	30	D ^{ec.} 1962
F.Q.	6.9£	<i>T</i> .82	72	L	0.4	ţ	8.61	Þ	3.91-3.1	69	1962. Oct.
Г.Q.	0.7£	7.62	ΙÞ	12	9.1	T	2.22	I	1.5-19.0	£2	.2062 Учрт. Серт.
F.Q.	36.5	.qm9T 31.2	100 Гутаве	₹ Zsmples	7.1 	Stage I	Deviation 0.3	I Stage	1.5-5.5 	Collected 129	Date
nooM Phases	Avg. Sal.	.gvÅ	Per cent Vith	Number	Modal Size	IsboM 9848	nsəM noiteivəfi	ns9M apet2	əziZ	Number	Dot -

west to the Yucatan Straits. At some stations soft drink bottles (161) were released for the U. S. Fish and Wildlife Service Biological Laboratory, Galveston, Texas. It is interesting to note that most of the bottles released between Dry Tortugas and 88°35' west longitude were recovered in the Florida Keys and on the Florida east coast. Those released near the Tortugas showed more returns in the Florida Keys than did bottles released west of there. The one exception was station 20, whence one recovery was made at Grand Isle, Louisiana, and another at Veracruz, Mexico. All the bottles released west of 88°35' W, were recovered from the coasts of Texas and Louisiana. Bottles released along the north coast of Yucatan and in the western Yucatan Straits were found in Florida, the Bahama Islands, Texas, and Louisiana. According to current charts all these bottles should have stranded in the northwestern Gulf. Observed returns can only be explained by the existence of uncharted eddies or by the effect of local wind and tidal conditions after the initial dispersal. The effect of wind on drift-bottles is shown by Chew et al. (1962), who reported on the abnormalities in returns of drift-bottles released in the wake of hurricane Carla. The general effect of wind on surface and subsurface currents is discussed by Sverdrup et al. and by Leipper. The fact that no recovery was made from station 32 in less than 92 days suggests that the bottles may have spent some time traveling around before being caught in a current that carried them ashore. To date 24 per cent of the bottles released in April, 1963, have been recovered.

In June 1963, 434 of our own drift-bottles and 135 bottles provided by the Fish and Wildlife Service were released, mostly in or slightly south of the Yucatan Straits. The quickest return from this area was 65 days, and the mean number of days for all recoveries was 120. This would suggest that the bottles may have been retained for it was shown by the fall release that such a trip could be made in as few as 18 days. Again, bottles released on the western side of the Yucatan Straits were recovered from Jacksonville, Florida, to southwestern Texas. To date returns have reached 23 per cent of those released.

Only 192 bottles were dropped in August, 1963. They were released at four sites in and just north of the Yucatan Straits. Only two stations have yielded returns. From Station A2 recoveries were made on the Florida east coast and at Port O'Connor, Texas. From

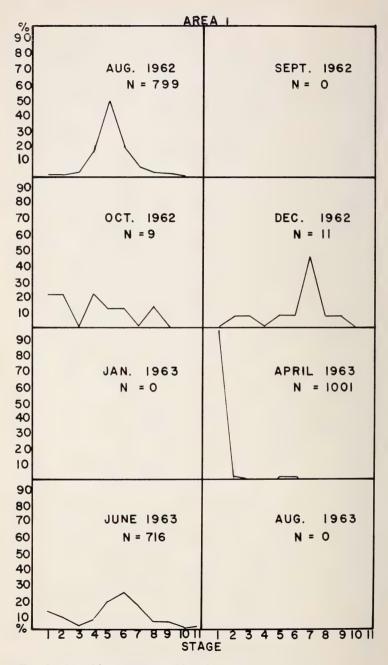


Fig. 2. Monthly occurrence of larval stages in Area I.

Station A4 returns were made from the east coast of Florida only. The transport appeared to be much faster at the time of this release. One bottle reached Delray Beach, Florida, in 20 days, a rate of not less than 30 miles a day. The mean rate for all returns was 50 days or about 12 miles a day. We have recovered only 7 per cent of those released.

Possible Interpretations of Drift-Bottle Data

Data thus far developed from this study indicate that the rate of flow of the surface current from the Yucatan Straits to Florida is sometimes, at least, as fast as 30 miles a day. Such rapid transport could have important bearing on the recruitment of phyllosoma larvae. Lewis (1951) feels that the length of the planktonic life of *P. argus* is more than 6 months. Other workers (Gurney, 1936; Johnson, 1960a; Prasad and Tampi, 1959) predict similar lengths of time for other species. All estimate that 9-13 stages develop during this interval. Saisho (1962) was able to raise the larvae of P. japonicus to the eleventh phyllosoma stage in 90 days. However, his stage XI is equal in size and development to stage V as described by Lewis. Saisho interprets this to mean that there must be many more stages in the development of the larvae than past studies have indicated. The opinion shared by Saisho (1962), George and Cawthorn (1963), and Inoue and Nonaka (1963) is that the length of time between ecdyses varies with age and be-comes increasingly longer as the phyllosoma mature. Saisho's work on P. japonicus showed that the time between stage I and II averaged 7.4 days, while the time between stage X and XI averaged 13 days. From these data we may assume that the length of time from stage I to the last stage in P. japonicus must be more than 6 months and that the total number of stages must be more than 11. The same is likely true of *P. argus*.

When applied to our drift-bottle data, these findings have interesting cannotations. For example, the data shown by driftbottle No. 77A, which traveled from the Yucatan Straits to Snake Creek bridge in the Florida Keys in 18 days, suggest that even at this rate of transmigration any first stage phyllosoma hatched in the Yucatan Straits undergoes two ecdyses before reaching Florida. Therefore, any first stage phyllosoma larvae found in Florida waters must be the spawn of local populations. Deductions of this type

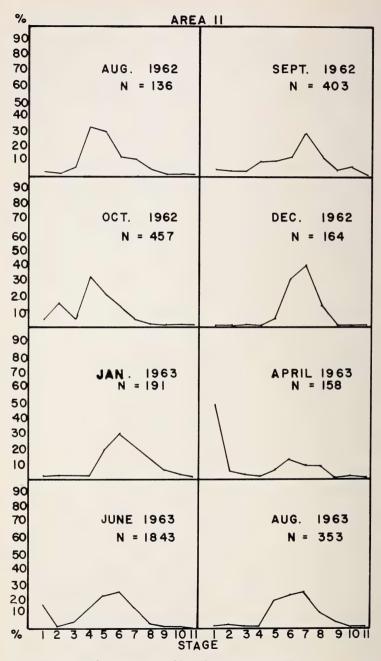


Fig. 3. Monthly occurrence of larval stages in Area II.

should be of value in locating offshore populations. It is possible that older stages could pass from the Caribbean to Florida without ecdyses; however, it may be deduced from the drift-bottle study that some of the objects carried by the surface currents of this area may spend some time in the eddies and slow moving currents that retard their northward movement.

It is possible that larval development is accelerated in the warm tropical waters of the Caribbean and lower Gulf of Mexico. If so the distance from the source of recruited larvae to Florida would be shorter than the distance in higher latitudes.

VERTICAL DISTRIBUTION AND DIURNAL MIGRATIONS

A phyllosoma larva is not a static object like a drift-bottle. Although planktonic in nature and at the mercy of prevailing currents, the larvae may inadvertently retard their northward movement by undergoing changes in vertical distribution. Harada (1957), George and Cawthorn (1963) and Johnson (1960a) suggested that the phyllosoma larvae follow the typical daily vertical migration of zooplankton (Moore, 1958). Our observations both in the laboratory and at sea agree with these data. In tanks at the Pigeon Key Field Station, early stage phyllosoma swam the length of a 12 foot tank to congregate in the dim light surrounding a flashlight beam. If the beam was moved to the other end of the tank all the larvae followed within 5-10 minutes.

Table 1 lists the data collected during cruise number 7, made in June 1963. During this cruise two one-meter nets were fished simultaneously at each station in an attempt to show a variation in the catch of each net during night and day. One net was fished just below the surface and well behind the boat, to reduce the chance of catching sargassum weed, which was abundant in the area. Every attempt was made to keep the top of the net not deeper than one foot. The second net was fished in the oblique manner, 300 feet to surface in 30 minutes. Both nets were fished for the same length of time. The deep net was brought out of the water as soon as it reached the surface to prevent it from taking surface plankton, as closing devices were not available. The data clearly show that the largest number of phyllosoma were collected by the deep net during day sampling, 7 AM to 7 PM, and by the surface net during the night. Almost no larvae were taken on the

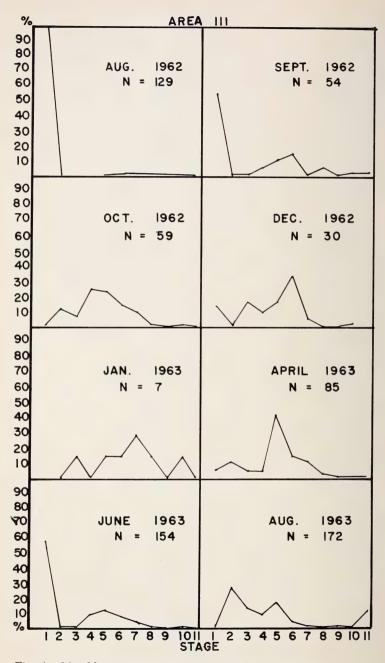


Fig. 4. Monthly occurrence of larval stages in Area III.

surface during day samples, and the few larvae that were collected by the deep net at night may have been inadvertently captured in surface water as the net was lowered and raised.

Differences in direction between surface and subsurface waters are not uncommon and are frequently described in oceanographic reports. These differences in current direction coupled with the vertical distribution and migration of phyllosoma larvae could aid in the retention of phyllosoma in a given area and would augment chances for some local recruitment in Florida. This must remain a speculation, however, until supporting evidence is developed.

SEASON OF HATCHING AND OCEANOGRAPHIC DISTRIBUTION

The first phyllosoma stage was collected every cruise except the one made in January when the youngest stage was stage II. The last stage (XI) was taken every trip except April. First stage post-larvae were collected only in April, June, and August. In no cruise did the range fail to extend from Stages II to X.

Such data suggest that hatching takes place throughout the year at various points in and below the area of study. Supporting evidence is given by Smith (1948b) and Holthuis and Zaneveld (1958), who found gravid female spiny lobsters in the Caribbean from October to June, and by Lewis (1951), who reported them in Florida from March to November.

In an attempt to show a progression in the modal sizes of phyllosoma transmigrating from the Caribbean to Florida and from Florida north, four sampling areas were set up; Area I, from latitude 20-22° N, including the Yucatan Straits and the waters north of the Yucatan Peninsula; Area II, between latitude 22-24° N, including the waters west of Cayo Arenas and east to Alligator Reef in the Florida Keys; Area III, the waters between latitude 24-26° N; and Area IV, a straight line due east of St. Augustine, Florida extending to the middle of the Gulf Stream. Area IV was sampled only during the months of July and August, 1962. Tables 2-4 give the data collected in each of the areas. Table 5 combines Areas I-III. Table 6 provides information obtained in the Gulf Stream east of St. Augustine. Monthly size frequency graphs are provided for each area (Figs. 2-5).

These tables and figures show no modal progression in size or stage between areas or from month to month. Geographically the

пооМ Рhase	.gvA .ls2	.gvA .qmэT	Рег сепt with Дагуде	Samples Samples	IsboM Size	Modal Stage	Mean Deviation	nsəM Stage	Size Size	Collected Number	Date
Е.Q.	<i>7.7</i> £	1.08	63	82	0.8	2	7.11	ç	0.62-8.1	†90I	Aug.
Г.Q.	6.78	8,62	29	42	5.2	L	7.02	L	0.82-2.1	L S F	1962. Sept.
.О.Я	7.78	8.82	62	36	0.4	ħ	2.11	Þ	1.5-23.2	225	1932 Oct.
.М.Э	3.85	6.42	9t	99	2.8	L	6.21	1 L	1.32-3.1	202	Dec. 1962
.М.Э	38.5	6. 4 2	29	97	2.7	9	7.21	9	2.3-25.2	861	.nsl 1962
.M.N	E.7E	2.52	15	LL	<i>T</i> .1	τ	20.9	T	0.12-1.1	1244	Apr. 1963
г.Q.	3.78	2.82	02	112	7.1	9	6.81	9	J.5-23.5	£172	əunf 8961
.М.Э	—	0.62	06	67	0.8	ç	Þ.ei	ç	1.5-26.2	225	8961 - 201 804 - 201 1963 - 201

0001

LYBLE 5

١.

Po4 ÷ 11. . .

larvae are spread almost uniformly throughout the areas sampled except for the area in the Yucatan Straits, where the narrow channel and less surface area probably account for a concentration of the larvae and more are taken per sample.

A small number of early stage phyllosoma larvae belonging to the genus *Panulirus* have been collected in the Gulf of Mexico west of St. Petersburg, Florida.

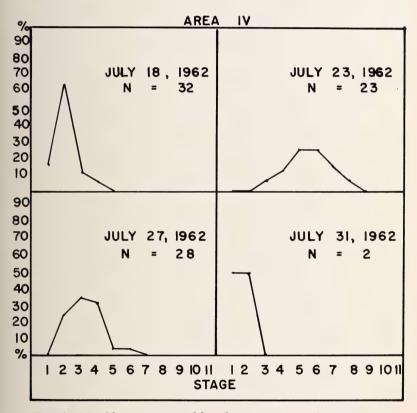


Fig. 5. Monthly occurrence of larval stages in Area IV.

HYDROGRAPHY AND DISTRIBUTION OF LARVAE

Studies made at the Pigeon Key Field Station indicate that hatching takes place on offshore reefs on the ocean side of highway U. S. 1. Samples of the plankton taken over these reefs during the spawning period yielded numerous first stage phyllosoma larvae.

LYBLE 6

Monthly data for Area IV, due east of St. Augustine, Florida

Per cent With Larvae	Number Station	IsboM Size	Modal Stage	Mean Deviation	Mean Stage	Aange Size	Collected Vumber	Date
33	21	2.3	2	I. 1	2	0.8-8.1	32	2961 ,81 vlul
20	21		9'S	5.8	9'S	8.61-0.6	23	2961 ,62 ylul
91	9	0.8	5	5.7	3	0.0-0.2	82	2961 ,72 _V lul
13	8		_	0		2.2-8.1	2	2961 ,15 ylul
TΤ	6	2.5	2	0	2	2.5	T	2301 ,82 .guA
31	38		2	₽.ð1	2	8.61-8.1	28	2961 , ylul

In samples taken farther offshore the percentage of stage I lessened and a wide size range was collected. From the bridges along U. S. 1 in the Florida Keys, 1237 samples produced only 7 phyllosoma larvae, viz.: three stage I collected in May 1963, and single specimens of stages I, III, VI, and VIII collected in August 1963. Prasad and Tampi (1957) and Johnson (1960b) reported similar findings and feel that there is a rapid offshore movement of the first stage. If this is the case in the Florida Keys, then this stage must enter the Gulf Stream to be carried toward northern waters. Some of these larvae may be able to re-enter coastal populations by being caught in one of the numerous eddies that lie along the eastern coast of the United States and in the Bahamas. Great numbers must drift northward with the Gulf Stream to oblivion in the North Atlantic.

Twenty-six per cent of the phyllosomas collected during the 8 cruises were in the first stage. The largest single catch of this stage was made in April, 1963, when 712 were collected in a 30 minute sample taken just northeast of Cabo Catoche, Yucatan. All the other samples containing large numbers of stage I were collected within 50 miles of land, but it was not uncommon to collect this stage more than 100 miles offshore.

The middle stages, IV through VII, accounted for the greatest number of phyllosomas collected. These were collected every month and in every area sampled indicating a good mixing of larval populations and a constant recruitment.

The last stage accounted for only one-half of one per cent of the total number collected. Small numbers were collected both inshore and offshore and on the surface as well as in the deep water.

Post-larvae were collected in the offshore waters of the Florida and Yucatan Straits during the months of April, June, and August and were collected in the inshore waters of the Florida Keys from April to August. Large numbers of post-larvae were reported in Miami from January to March (Lewis et al., 1952), and they occur throughout the year in the Indian River at Stuart, Florida (Witham et al., 1965). The post-larvae apparently may enter the inshore waters to undergo juvenile development, but their occurrence both inshore and offshore suggests metamorphosis takes place regardless of the suitability of location for survival.

TABLE 7

Drift-bottle return data

Bottle	Number	Date of	Release	Locations	Date of	Days	
Number	Station	Release	Lat. N.	Long. W.	Retrieval	Elapsed	Area of Retrieval
77A	48	9/6/62	22.00	86.00	9/23/62	18	North of Snake Creek Bridge, Florida Keys
79A	48	9/6/62	22.00	86.00	1/4/63	119	Ocean Reef, Key Largo, Florida
2A	49	10/9/62	22.05	86.06	5/4/63	210	East of Matagorda, Texas
8	5 5	4/23/63	24.37	82.40	5/9/63	16	Boca Raton, Florida
11	5	4/23/63	24.37	82.40	5/20/63	25	Plantation Key, Florida Keys
13	6	4/23/63	24.38	83.00	5/23/63	14	Lantana, Florida
14	6	4/23/63	23.38	83.00	5/11/63	18	Delray Beach, Florida
16	6	4/23/63	24.38	83.00	5/13/63	20	Ft. Pierce Inlet, Florida
17	6	4/23/63	24.38	83.00	10/9/63	169	Dry Tortugas, Florida
20	7	4/24/63	24.29	83.13	6/12/63	49	Boca Chica Key, Florida Keys, Florida
21	7	4/24/63	24.29	83.13	5/14/63	20	Jade Beach, Ft. Lauderdale, Florida
23	7	4/24/63	24.29	83.12	5/19/64	360	Windley Key, Florida Keys, Florida
25	8	4/24/63	24.21	83.32	5/4/63	10	Malibu Lodge, Islamorda, Florida
29	8	4/24/63	24.21	83.32	7/15/63	82	East Side Plantation Key, Florida
30	8	4/24/63	24.21	83.32	6/27/63	64	Coral Gables, Florida
32	9	4/23/63	24.13	83.58	7/30/63	98	Coral Gables, Florida
34	9	4/24/63	24.13	83.58	5/18/63	24	Old Rhodes Key (N. end), Miami, Florida
35	9	4/24/63	24.13	83.58	9/2/63	111	Angelfish Key, E. of N. end, Key Largo, Florida
36	9	4/24/63	24.13	83.58	3/6/64	317	Angelfish Key, E. of N. end, Key Largo, Florida
42	10	4/24/63	24.09	84.16	6/30/63	67	Miami Beach, Florida
47	11	4/24/63	24.02	84.34	8/11/63	109	E. side Elliot Key, S. of Sands Cut, Miami, Fla.

TABLE 7 (cont.)

Drift-bottle return data

Bottle Number	Station Number	Date of Release		Locations Long. W.	Date of Retrieval	Days Elapsed	Area of Retrieval
62	15	4 /05 /00	00.07	05.00	0.100.100		
	15	4/25/63	23.37	85.28	6/29/63	65	North Key Largo, Oceanside, Florida.
69 72	16	4/25/63	23.35	85.35	7/16/63	83	Palm Beach, Florida
72	16	4/25/63	23.35	85.35	7/13/63	81	Phipps Park, Lake Worth, Florida
79	18	4/25/63	23.21	86.17	6/26/63	62	Miami Beach, Florida
80	18	4/25/63	23.21	86.17	7/14/63	80	Ft. Lauderdale, Florida
83	18	4/25/63	23.21	86.17	6/12/63	48	Pompano Beach, Florida
85	19	4/25/63	23.18	86.36	6/1/63	37	Sebastian Inlet, Florida, near Grant, Florida
86	19	4/25/63	23.18	86.36	5/30/63	35	Vero Beach, Florida
89	19	4/25/63	23.18	86.36	5/22/63	27	Haufoune Park, Miami Beach, Florida
91	20	4/25/63	23.07	86.55	8/10/63	107	Grand Isle, La.
96	20	4/25/63	23.07	86.55	2'/28'/64	309	Arrecife dela Gallega, Bay of Vera Cruz, Mex
98	21	4/25/63	22.59	87.13	10/9/63	167	3 miles N. Pepper Pk., Ft. Pierce, Florida
114	25	4/26/63	22.34	88.25	8/8/63	104	Travernier, Florida
119	24	4/26/63	22.41	88.16	9/29/63	156	St. Augustine Beach, Florida
120	24	4/26/63	22.41	88.16	7/27/63	92	Ft. Taylor Officer Club, Key West, Florida
126	23	4/25/63	22.42	88.16	9/4/63	111	Biscayne Bay, Miami, Florida
127	26	4/25/63	22.31	88.45	11/19/63	219	Radar Cameras, Melbourne Beach, Florida
131	26	4/25/63	22.31	88.45	9/23/63	150	Daytona Beach, Florida
135	27	4/26/63	22.01 22.29	89.00	6/10/63	45	Galveston, Texas
138	27	4/26/63	22.29	89.00	6/16/63	40 51	Cameron, La.
139	28	4/26/63	22.23 22.21	89.19	6/9/63	44	Bolivar Peninsula, Texas

cont.)
7 (c
LE
TAB

Drift-bottle return data

Area of Retrieval	Gilchrist, Texas Surfside Beach, Freeport, Texas Matagorda, Texas Sargent Beach, Texas Sargent Beach, Texas Green's Bayou, Matagorda Peninsula, Texas Graillou Island, Louisiana Man-o-War Cay, Bahamas Bolivar Peninsula, Galveston, Texas Whiskey Pass, La. Ocean side of Key Largo, Florida Vilano Beach, St. Augustine, Florida Miami Beach, Florida Miami Beach, Florida Tamaulipas, Mexico Vero Beach, Florida Tamaulipas, Mexico Vero Beach, Florida Crandon Park, Miami, Florida
Days Elapsed	49 41 68 64 73 73 73 116 116 1149 91 91 125 88 88 289 106 117 93 93 75
Date of Retrieval	$\begin{array}{c} 6/14/63\\ 6/6/63\\ 7/1/53\\ 7/1/53\\ 7/10/63\\ 8/23/64\\ 12/27/63\\ 9/20/63\\ 9/11/63\\ 9/11/63\\ 9/11/63\\ 9/11/63\\ 9/11/63\\ 9/116/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 9/2/63\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
Release Locations Lat. N. Long. W.	89.19 87.21 87.21 87.21 87.21 86.08 86.08 86.08 86.08 86.08 85.220
Release I Lat. N.	$\begin{array}{c} 22.21\\ 22.58\\ 22.04\\ 22.04\\ 22.04\\ 22.04\\ 21.35\\ 22.04\\ 22$
Date of Release	$\begin{array}{c} 4/26/63\\ 4/26/63\\ 4/28/63\\ 4/28/63\\ 4/29/63\\ 4/29/63\\ 4/29/63\\ 6/20/62\\ 6/20/62\\ 6/20/62\\ 6/20/62\\ 6/20/62\\ 6/20/62\\ 6/20/62\\ 6/20/62\\ 6/20/62\\ 6/20$
Station Number	28 29 29 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29
Bottle Station Number Number	140 159 161 161 162 164 181 202 203 203 277 278 277 278 277 278 277 278 276 277 278 276 277 278 277 277 277 277 270 277 277 270 277 270 277 270 277 270 277 270 270

SUMMARY

A large number of plankton samples were taken with 1 meter and ½ meter plankton nets in the waters of the Yucatan and Florida Straits. The absence of a progression of model size or stage for phyllosoma larvae of *Panulirus argus* from southern to northern stations or from month to month indicates that year around spawning takes place in the Caribbean. This assumption is supported by the continuous presence of gravid females. The wide size range throughout the period sampled is also consistent with widespread recruitment from the Caribbean.

Drift-bottle data indicate that the rate of flow of the surface water from the Yucatan Straits to Florida may be as fast as 30 miles a day, but many floating objects take longer because of eddies and slower currents. Moreover, in a laminated current system in which contiguous layers move in opposing directions, horizontal movements of vertically migrating plankton may be retarded. Phyllosoma larvae undergo such vertical migration.

Successful migration of planktonic animals over long distances is largely dependent upon length of larval life and speed of currents. Prevailing hydrographic conditions in the Yucatan and Florida Straits give strong evidence of the seeding of Florida waters with Caribbean hatched phyllosoma larvae. Information is now needed to show how these larvae enter coastal populations and what methods may be employed to retain greater numbers of them to insure their survival and growth. The international scope of current and future investigations emphasizes the need for cooperative efforts throughout the Caribbean area. Even though spawning in Florida is probably greatest in spring and summer, the year around delivery of larvae from the Caribbean and continuous recruitment of newly formed post-larvae makes year classes difficult to distinguish.

LITERATURE CITED

- ARENDT, H. E., 1963. A wandering beachcomber returns. Florida Naturalist, vol. 36, no. 1, pp. 5-7.
- BRICCS, J. C. 1958. A list of Florida fishes and their distribution. Bull. Florida State Mus., vol. 2, no. 8, pp. 223-318.
- CALDWELL, D. K., AND J. C. BRIGGS. 1957. Range extensions of western North Atlantic fishes with notes on some soles of the genus *Cymnachirus*. Bull. Florida State Mus., vol 2, no. 1, pp. 1-11.

Drift-bottle return data

		, ,			, ,		
Vero Beach, Florida		8\52\8	82.35	$0_{4.02}$	6/20/63	43	410
South of Miami, Florida		£/13/64	85.35	$0_{4.02}$	6/20/63	43	L01⁄2
Daytona Beach, Florida	16	8/61/6	35.35	$0_{4.02}$	6/20/63	€⊉	901⁄2
Anastasia Island near St. Augustine, Florida	201	10/2/03	82.35	$0_{4.02}$	6/20/63	43	101/2
Crescent Beach, St. Augustine, Florida	28	6\I2\63	35.35	$0_{40.40}$	6/20/63	43	366
Ponte Verda Beach, Neptune Beach, Florida	101	6\58\63	92.98	20,30	£9/61/9	98	268
Pelican Island, Galveston, Texas	<i>51</i> 2	₽9/LI/E	22.98	26.32	£9/61/9	68	395
Port O'Connor Gulf Beaches, Texas	123	11/16/03	95.98	20,30	£9/61/9	36	168
Travernier, Florida Keys, Florida	121	10/18/03	92.98	20.30	£9/61/9	36	386
Grand Terre Island, Louisiana	821	10\54\63	92.98	20.30	£9/61/9	36	380
Vera Cruz, Mexico	252	2/14/64	22.98	20.32	£9/61/9	68	275
Delray Beach, Florida	29	6\5\63	22.98	20.32	£9/61/9	68	375
Ft. Pierce, Florida	901	10/4/03	85.13	74.02	6/20/63	Sħ	77£
Key Biscayne, Florida	901	10/4/03	85.13	74.02	6/20/63	S₽	873
Padre Island, Corpus Christi, Texas	129	10/52/03	85.13	74.02	6/20/63	St	998
False Cape, Titusville Beach, Florida	120	10/18/03	85.13	74.02	6/20/63	S4	362
Matagorda Island, Port O'Connor, Texas	142	11/15/03	85.13	74.02	6/20/63	SÞ	360
Jupiter Island, Florida	811	10/16/63	85.13	74.02	6/20/63	St	320
Brownsville, Texas	IIE	4/55/64	85.13	74.02	6/20/63	97	325
New Smyrna Beach, Florida	62 I	10/25/63	85.13	74.02	6/25/63	9₽	324
Area of Retrieval	Elapsed	Retrieval	.W .gno.I	Lat. N.	Belease	Number	Number
	Days	Date of	Locations	Release	Date of	Station	Bottle
		-		<u> </u>			

Ξ

TABLE 7 (cont.)

Drift-bottle return data

Area of Retrieval	Elapsed Days	Date of Isveitieval	Location .W.gnoJ		Date of Release	Station Yumber	Bottle Number
 Jensen Beach, Florida	801	89/2/01	85.13	10.12	69/12/9	97	456
Jupiter, Florida	66	6\58\63	85.13	10.12	6/21/63	9t	724
Delray Beach, Florida	76	6\56\63	85.13	10.12	6/21/63	97	428
St. Augustine, Florida	86	6/22/6	82.13	10.12	6/21/63	9₺	433
Daytona Beach, Florida	201	69/11/01	90.28	94.12 07.10	6/22/9	27 27	954
St. Augustine, Florida	121	11/50/02	90°28	97 IZ	6/21/63	 ∠₹	077
Titusville Beach, Florida	81 26	£9/97/6	06 88 90°£8	97.12 97.12	6/21/63	с 17	091 977
Smathers Beach, Key West, Florida	22 81	89/8/6 89/11/2	02.E8 02.E8	08.92	69/52/9 6/23/63	3 5	29V 69V
Key West, Florida Cocoa Plum Beach, Marathon Shores, Florida	02	2/14/03	02.68	05.32 05.32	6/23/63 6/23/63	3	897 L97
Padre Island, Texas	302	₱9/6I/₱	83.20	26.30	6/23/63	3	697
Miami, Florida	9L	£9/1/6	4I.88	22.15	6/17/6	20	₹ ∠ ₹
Garden Key, Tortugas, Florida	2	6/16/63	60.68	24.38	6/14/63	9	9 <i>L</i> Þ
Daytona Beach, Florida	113	10/8/03	4I.88	22.15	£9/11/9	20	081⁄2
Carden Key, Tortugas, Florida	2	6/16/63	60.68	85.42	6/14/63	9	284
South New Smyrna Beach, Florida	121	10/16/63	41.98	21.22	8/11/9	20	981
Garden Key, Tortugas, Florida	0	6/14/9	00.68	85.42	89/77/9	9	<u>18</u> ₽
Hollywood Beach, Florida	991 1/8	E9/6/6	71'98	21.22	89/21/9	20	88ħ
Julia Island, ocean side of Key Meet Florida	191 921	59/07/11	72 28 41.88	21.22	E9/00/9	02	061/
Saddle Bunch Keys, off Key West, Florida	TOT	11/58/63	78.88	24.02	6/20/63	42	26^{-1}

Drift-bottle return data

Tourinto a 30 nont	Days	Date of Retrieval	Locations W and		Date of	Station	Bottle
Area of Retrieval	Elapsed	TRETTEVAL	.W .gno.J	'NT '187T	Release	Number	Tadmin
Ormond Beach, Florida	120	10/18/63	78.88	24.02	6/20/63	45	\$6₽
Plantation Key, Florida Keys, Florida	001	10/9/01	78.88	24.02	6/20/63	45	96t
Julia Island, Florida Keys, Florida		₹9/8/£	78.88	24.02	6/20/63	24	861⁄2
N. of Ormond Beach, Florida	86	6\56\63	85.35	20.42	6/20/63	2^{1}	203
Marathon Shores, Florida	126	11/53/63	78.58	20.42	6/20/63	7₹	202
Cape Canaveral Beach, Florida	153	10/51/63	78.88	24.02	6/20/63	7₽	909
Boca Ciega Beach, Havana, Cuba	881	12/25/63	78.58	24.02	6/20/63	45	209
Padre Island, Corpus Christi, Texas		11/53/63	25.28	24.02	6/20/63	45	609
New Smyrna Beach, Florida	66	89/27/6	25.28	24.02	6/20/63	77	210
Jensen Beach, Florida		8/31/63	29.88	24.02	6/20/63	24 7	IIS
Duck Key, Florida Keys, Florida		E9/1/01	78.88	24.02	6/20/63	45	212
Garden Key, Tortugas, Florida		6/12/63	00.88	24.39	6/14/63	9	218
Lower Matecumbe Key, Florida	86	6/51/63	22.98	14.02	6/20/63	07	619
Ormond Beach, Florida		69/21/01	22.98	14.02	6/20/63	07	273
Marathon Shores, Florida	101	6/57/63	\$7.98	14.02	6/20/63	07	225
Port O'Connor, Texas		49/87/4	SS.98	46.02	£9/61/9	32	699
Sands Key, Miami, Florida		10/12/03	22.98	45.02	£9/61/9	32	029
Tavernier, Florida	86	6/25/21	22.98	45.02 10.34	89/61/9	32	ILS
Daytona Beach, Florida		£9/21/01	22.98	45.02	£9/61/9	32	723 725
Ormond Beach, Florida	TTT	10\8\03	22.98	£0.34	8/16/93	32	929

- CALDWELL, D. K. 1959. Observations on tropical marine fishes from the northeastern Gulf of Mexico. Quart. Jour. Florida Acad. Sci., vol. 22, no. 1, pp. 69-74.
- CHEW, F., K. L. DRENNAN, AND W. J. DEMORAN. 1962. Drift-bottle return in the wake of hurricane Carla, 1961. Jour. Geophys. Res., vol 67, no. 7, pp. 2773-2776.
- CRAWFORD, D. R. 1922. Spawning habits of the spiny lobster *Panulirus* argus with notes on artificial hatching. Trans. Amer. Fish. Soc., vol. 50, no. 2, pp. 312-319.
- CRAWFORD, D. R. AND W. J. J. DE SMIDT. 1922. The spiny lobster Panulirus argus of southern Florida: Its natural history and utilization. Bull. U. S. Bur. Fish., vol. 38, pp. 281-310, fig. 260-273.
- DAWSON, C. E. AND C. P. IDYLL. 1951. Investigations of the Florida spiny lobster *Panulirus argus* (Latreille). Florida Bd. Conserv., tech. ser., no. 2, pp. 1-39.
- DAY, C. G. 1961. A literature survey of hydrography, bathymetry and fisheries of the Atlantic Ocean under the Atlantic Missile Range with an appendix on the Mona Island region. Woods Hole Ocean. Inst., no. 61-36, pp. 1-114.
- DRUMMOND, K. H., AND G. B. AUSTIN, JR. 1958. Some aspects of the physical oceanography of the Gulf of Mexico, physical, chemical data from *Alaska* cruises. U. S. Fish and Wildl. Ser. Spec. Sci. Rept. Fish., no. 249, 417 pp.
- GEORGE, R. W., AND P. CAWTHORN. 1953. Investigations on the phyllosoma larvae of the Western Australian crayfish. Report for 1962, pp. 1-9 (mimeo.).
- GUERIN, F. C. 1830. Crustaces et arachnides. Voyage de la Coquille, 1822-1825, vol 2, no. 2, pp. 9-319.
- GUPPY, H. B. 1917. Plants, seeds, and currents in the West Indies and Azores. Williams and Norgate, London, 531 pp.
- GURNEY, R. 1936. Larvae of Decapoda Crustacea. Part III. Phyllosoma. Discovery Rept., vol. 12, pp. 400-440.
- HARADA, E. 1957. Ecological observations on the Japanese spiny lobster, *Panulirus japonicus* (von Siebold), in its larval and adult life. Pub. Seto Mar. Biol. Lab., vol. 6, no. 1, pp. 99-119.
- HOLTHUIS, L. B. 1946. The decaped Macrura of the Snellius Expedition. I. The Stenopodidae, Nephropsidae, Scyllaridae and Palinuridae. Biol. Res. Snellius Exped. XIV, Temminckia, vol. 7, pp. 87-178.
- HOLTHUIS, L. B., AND J. S. ZANEVELD. 1958. De Kreeften van de Nederlandse Antillen. Zoologische Bijragen, no. 3, 26 pp.

Drift-bottle return data

Area of Retrieval	Elapsed Days	Date of Retrieval	s Long. W.	Release Lat. N.	Date of Release	Station Number	Bottle
Stuart, Florida	26	69/42/6	25.98	46.02	61/9	32	878
Miami Beach, Florida	911	10/13/63	25.98	46.02	89/61/9	32	280
New Smyrna Beach, Florida	601	10/10/03	22.98	46.02	89/61/9	32	285
Padre Island, Corpus Christi, Texas	105	$6 \ 82 \ 63$	62.88	14.02	6/18/63	34	219
New Smyrna Beach, Florida	911	10/12/63	14.88	20.56	6/18/63	33	629
Padre Island, Corpus Christi, Texas	120	£8\ 4 2\11	₽1.88	20.56	6/18/63	33	434
Duck Key, Florida	611	10/20/63	83.10	26.43	6/23/63	2	689
Spanish Cay, Bahamas	272	3/20/64	83.10	26.43	6/23/63	2	249
Ft. Pierce, Florida	06	89/61/6	83.10	56.43	6/21/63	2	643
Woman Key, Key West, Florida	54	89/21/2	83.10	26.43	6/23/63	2	779
Marathon, Florida	Iħ.	$\frac{8}{3} \frac{1}{2}$	01.68	26.43	6/23/63	2	679
St. Lucie Inlet, Stuart, Florida	221	10/28/63	64.68	54.92	69/62/9	2	099
Green Key, New Port Richey, Florida	SI	$\frac{80}{8}/\frac{1}{2}$	23.28	00.72	60/62/9	Ĩ	<u>9</u> 29
Flor-A-Mar Beach, New Port Richey, Florida	13 17	£9/07/L	73.28	00.72	69/62/9	Ţ	LS9
Manor Beach, New Port Richey, Florida		8/55/83	73.28	00.72	6/23/63	T	829
Flor-A-Mar Beach, New Port Richey, Florida	SI	$\frac{29}{8}/\frac{8}{2}$	72.28	00.72	69/62/9	T	6 <u>9</u> 9
Flor-A-Mar Beach, New Port Richey, Florida	SI	£9/8/2 £9/8/2	72.28	00.72	£9/£2/9	T	099
New Port Richey, Florida		E9/26/6	78.28 78.28	9V 18	£9/£7/9	2₹⁄ 1	899 899
Vew Smyrna Beach, Florida St. Augustine, Florida		89/8/01 89/27/6	90 . 88 90.88	94.12 84.12	6/21/63 6/21/63	24	<u>999</u>
Daytona Beach, Florida Daytona Beach, Florida		10/11/03	90.88	04.12 04.12	6/23/63	27 11-	899
	OTT	00/11/01	00:00	01.15	00/07/0		000

TABLE 7 (cont.)

Drift-bottle return data

St. Augustine, Florida	81⁄2	89/27/6	01.78	15.82	8/10/63	₽V	868
Between Ormond and Flagler Beach, Florida	69	10\8\03	01.78	15.62	8\10\93	₽¥	988
West Palm Beach, Florida	22	£9/I/6	01.78	15.62	8\10\8	₽V	<i>LL</i> 8
Satellite Beach, Florida	L₽	6\56\93	01'28	15.62	8\10\63	₽¥	S78
Jacksonville Beach, Florida	89	E9/2/01	01.78	15.62	8\10\8	₽¥	028
New Smyrna Beach, Florida	9t	6\52\63	82.88	45.82	8\10\8	₽V	698
South Padre Island, Texas	238	₽9/₽/₽	01.78	15.62	8\10\83	$* \forall$	898
Flagler Beach, Florida	09	£9/6/0I	01.78	15.62	8\10\93	₽¥	298
Cocoa Beach, Florida	101	11/20/63	01.78	15.62	8\10\63	₽¥	098
Delray Beach, Florida	50	8\30\63	01.78	15.62	8\10\93	₽¥	828
Matagorda Island, Port O'Conner, Texas	040	₽9/ <u>\$</u> /₽	04.88	22.22	1 9/6/8	ZV	₽87
Port Everglades Jettys, Florida	68	89/11/6	04.88	22.22	8/6/8	ZY	<i>₹∠∠</i>
New Smyrna Beach, Florida	9t	£9/£4/63	04.88	22.22	£9/6/8	ZA	692
Melbourne Beach, Florida	26	6\54\e3	90.28	64.12	6/21/63	L₽	£89
Cocoa Beach, Florida	96	6\52\63	90.28	84.12	6/21/63	LŦ	1 89
Cape Canaveral, Florida	96	6\55\63	90.28	94.12	£9/61/9	L₽	683
Padre Island, Texas	811	E9/71/01	90.28	94.I2	6/21/63	LÞ	089
Padre Island, Texas	233	£9/6/2	90.28	64.12	6/21/63	LÞ	829
Daytona Beach, Florida	611	10\18\63	90.28	64.12	6/21/63	L₽	129
Hollywood Beach, Florida	103	10/5/63	90.28	64.12	6/21/63	74	029
St. Augustine, Florida	901	10/2/63	90.28	84.12	68/12/8	2₽	699
Area of Retrieval	Elapsed	Retrieval	.W .gno.l	Lat. N.	Release	Number	nuber
	Days	Date of	Locations	Release	Date of	Station	Bottle

Area of Retrieval	Golden Beach, Dade County, Florida Lantana, Florida Golden Beach, Miami, Florida Ormond Beach, Florida Palm Beach, Florida Hollywood Beach, Florida Titusville, Florida Ft. Pierce, Florida New Smyrna Beach, Florida Indialantic, Florida New Smyrna Beach, Florida New Smyrna Beach, Florida New Smyrna Beach, Florida New Smyrna Beach, Florida Palnation Key, Florida Polray Beach, Florida Port Canaveral, Florida Matagorda Beach, Texas Flamingo, Florida
Days Elapsed	126 244 82 82 82 170 174 157 157 157 152 152 149 99 99 90 111 120 114 114
Date of Retrieval	9/2/63 7/20/63 1/27/63 1/27/63 10/16/63 10/20/63 10/26/63 9/28/63 9/28/63 9/28/63 9/28/63 9/26/63 10/17/63 10/10/63 10/10/63 10/10/63 10/10/63 11/10/63
Release Locations t. N. Long. W.	86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.08 86.41 86.41 86.41 86.53 86.53
Release Lat. N.	21.35 21.35
Date of Release	4/29/63 4/29/63 4/29/63 4/29/63 4/29/63 4/29/63 4/29/63 4/29/63 4/29/63 6/18/63 6/18/63 6/18/63 6/19/63 6/19/63
Station Number	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Bottle Number	7624 7624 7625 7651 7651 7655 7808 7810 7836 7836 7836 7836 7836 7836 7836 7836

TABLE 7 (cont.) Drift-bottle return data

QUARTERLY JOURNAL OF THE FLORIDA ACADEMY OF SCIENCES

11

- ICHIVE, T. 1962. Circulation and water mass distribution in the Gulf of Mexico. Geofisica Internacional, vol. 2, no. 3. pp. 47-76.
- INGLE, R. M., B. ELDRED, H. W. SIMS, JR., AND E. ELDRED. 1963. On the possible Caribbean origin of Florida's spiny lobster populations. Florida Bd. Conserv., tech. ser., no. 40, 12 pp.
- INOUE, M., AND NONAKA, M. 1963. Notes on the cultured larvae of the Japanese spiny lobster *Panulirus japonicus* (v. Siebold). Bull. Jap. Soc. Sci. Fish., vol. 29, no. 3, pp. 211-218.
- JOHNSON, M. W. 1960a. Production and distribution of larvae of the spiny lobster *Panulirus interruptus* (Randall) with records of *P. gracilis* Streets. Bull. Scripps Inst. Oceanogr. Univ. Calif., vol. 7, no. 6, pp 413-462.
 - —. 1960b. The offshore drift of larvae of the California spiny lobster *Panulirus interruptus.* Symposium on the changing Pacific Ocean in 1957 and 1958. Calif. Coop. Oceanic Fish. Invest. Rept., vol. 7, pp. 147-161.
- LEACH, W. E. 1816. Tuckey's narrative of an expedition to explore the River Zaire. London. Appendix 4, pp. 413-418.
- LEIPPER, D. F. 1954. Physical oceanography of the Gulf of Mexico. In Galtsoff, P. S., Gulf of Mexico. Its origin, waters and marine life. U. S. Fish and Wildl. Ser., Fish Bull., no. 89, pp. 119-137.
- LEWIS, J. B. 1951. The phyllosoma larvae of the spiny lobster, *Panulirus argus*. Bull. Mar. Gulf and Carib. Fish. Inst., vol. 1, no. 2, pp. 89-103.
- LEWIS, J. B., H. B. MOORE, AND W. BABIS. 1952. The post larval stages of the spiny lobster, *Panulirus argus*. Bull. Mar. Sci. Gulf and Carib. Fish. Inst., vol. 2, no. 1, pp. 324-337.
- MOORE, D. R. 1962. Notes on the distribution of the spiny lobster *Panulirus* in Florida and the Gulf of Mexico. Cruataceana, vol. 3, no. 4, pp. 318-319.
- MOORE, H. B. 1958. Marine ecology. John Wiley & Sons, New York, 493 pp.
- ORTMANN, A. E. 1893. Ergebnisse der Plankton. Expedition der Humboldt. Decapoden und Schizopoden, pp. 89-90, pl. 7, fig. 3.
- PRASAD, R. R., AND P. R. S. TAMPI. 1957. On the phyllosoma of Mandapam. Proc. Nat. Inst. Sci. India, vol. 23, pp. 48-67.
- ------. 1959. On a collection of Palinurid phyllosomas from the Laccadive Seas. Jour. Mar. Biol. Assn. India, vol. 1, no. 2, pp. 143-164.
- RICHTERS, F. 1873. Die Phyllosomen, ein Beitrag zur Entwicklungs-Geschichte der Loricaten. Zeitschr. f. Wiss. Zool., band 23, no. 4, pp. 623-647.

TABLE 7 (cont.)

Drift-bottle return data

Padre Island, Texas New Smyrna Beach, Florida Ormond Beach, Florida Ormond Beach, Florida Elliott Key, E. side, near Miami, Florida	207 06 601 101 881	$\begin{array}{c} 68 \\ 68 \\ 68 \\ 68 \\ 68 \\ 71 \\ 68 \\ 71 \\ 68 \\ 71 \\ 68 \\ 71 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 1$	00'28 95'98 51'58 55'98 80'28	85.02 45.02 74.02 50.02 50.30 55.02	£9/61/9 £9/07/9 £9/07/9 £9/61/9 £9/61/9	38 95 97 37 28 28	6878 7878 0878 9978 2978 2778
Area of Retrieval	Elapsed	Date of	Locations.	Release]	Date of	Station	Number
	Days	Retrieval	W. Buod.	Lat. N.	Release	Number	Bottle

- ROBINSON, R. K., AND D. DIMITRIOU. 1963. The status of the Florida spiny lobster fishery 1962-63. Florida Bd. Conserv. tech ser. no. 42, pp. 1-30.
- SAISHO, T. 1962. Notes on the early development of phyllosoma of *Panulirus japonicus*. Mem. Fac. Fish. Kagoshima Univ., vol. 11, no. 1, pp. 18-23.
 - ------. 1964. The first phyllosoma stage of the spiny lobster, genus *Panulirus*. Mem. Fac. Fish. Kagoshima Univ., vol. 12, no. 2, pp. 127-134.
- SALSMAN, G. G., AND W. H. TOLBERT. 1963. Surface currents in the northwestern Gulf of Mexico. U. S. Navy Mine Defense Lab., Panama City, Florida, Research and Development Report 209.
- SHEARD, K. 1949. The marine crayfishes (spiny lobsters), family Palinuridae, of Western Australia with particular reference to the fishery on the Western Australian crayfish (*Panulirus longipes*). Austral. Council Sci. Indust. Res. Bull. no. 247, 45 pp.
- SIMS, H. W., JR. 1965. The phyllosoma larvae of Parribacus. Quart. Jour. Florida Acad. Sci., vol. 28, no. 2, pp. 142-172.
- Sмітн, F. G. W. 1948a. The spiny lobster industry of the Caribbean and Florida. Carib. Res. Coun., Carib. Comm. Port-of-Spain, Trinidad, Fish. Ser., no. 3, 49 pp.
 - -. 1948b. The spiny lobster and scale-fish industry of British Hondurus, with recommendations for its control and development. Rept. to the Government of British Honduras, Coral Gables, Florida, 29 pp. (mimeo.).
 - —. 1958. The spiny lobster industry in Florida. Florida Bd. Conserv., ed. ser., no. 11, 36 pp.
- STEWART, H. B., JR. 1962. Oceanographic cruise report of USC and GS ship Explorer-1960. U. S. Dept. of Commerce and Coast and Geodetic Survey.
- STOMMEL, H. 1958. The Gulf Stream; a physical and dynamical description. Univ. California Press, Berkeley, 202 pp.
- SVERDRUP, H. V., M. JOHNSON, AND R. H. FLEMMING. 1949. The oceans, their physics, chemistry, and general biology. Prentice-Hall, Inc., New York, 1087 pp.
- TAPANES, J. J. 1963. Afloramiento y corrientes cercanas a Cuba. Centro de Invest. Pesq., Cont. no. 17, 30 pp.
- THORSON, G. 1961. Length of pelagic larval life in the marine bottom invertebrates as related to larval transports by ocean currents. In Oceanography, Amer. Assoc. Adv. Sci., Washington, D. C., pp. 455-474.
- UNIVERSITY OF MIAMI. 1957. University of Miami Marine Laboratory. Final Report. Red tide studies., no. 57-18, 13 pp., 8 figs.

242 QUARTERLY JOURNAL OF THE FLORIDA ACADEMY OF SCIENCES

- VON BONDE, W. 1932. Post-brephalus development of some South African Macrura. Fish. and Mar. Biol. Surv., Union of South Africa, Report no. 8, pp. 2-42.
- WHITE, A. 1847. List of the specimens of Crustacea in the collection of the British Museum, pp. i-viii, 1-143.
- WITHAM, R., R. M. INGLE, AND H. W. SIMS, JR. 1964. Notes on post-larvae of *Panulirus argus*. Quart. Jour. Florida Acad. Sci., vol. 27, no. 4, pp. 289-297.
- Wust, G. 1964. Stratification and Circulation in the Antillean-Caribbean Basins. Part I. Columbia Univ. Press, New York, 201 pp.

Florida Board of Conservation Marine Laboratory, St. Petersburg, Florida. Contribution No. 95.

Quart. Jour. Florida Acad. Sci. 29(3) 1966 (1967)